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Orbital ordering in undoped manganites via a generalized Peierls instability
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We study the ground-state orbital ordering of LaMnQO;, at weak electron-phonon coupling, when the spin
state is A-type antiferromagnet. We determine the orbital ordering by extending to our Jahn-Teller system a
recently developed Peierls instability framework for the Holstein model [S. Datta and S. Yarlagadda, Phys.
Rev. B 75, 035124 (2007)]. By using two-dimensional dynamic response functions corresponding to a mixed
Jahn-Teller mode, we establish that the O, mode determines the orbital order.
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I. INTRODUCTION

Undoped manganites such as LaMnOj; are the parent sys-
tems for the colossal magnetoresistive materials. It is well
known that orbital ordering occurs around 780 K resulting in
a C-type orbital structure with two kinds of orbitals alternat-
ing on adjacent sites in the xy plane while like orbitals are
stacked in the z direction.” As the temperature is further low-
ered to 140 K, an A-type spin antiferromagnetic order sets in
wherein the spins are ferromagnetically aligned in the xy
plane with the spin coupling in the z direction being
antiferromagnetic.> To explain the observed order several
studies have been reported. These studies fall into two broad
classes based on the dominant cause for the observed order.
One class corresponds to electron-electron (Coulombic)
interaction*”’ being the main cause while the other class
treats the cooperative Jahn-Teller (JT) interaction®-!! as the
more important one. Lin and Millis'?> have made a quantita-
tive analysis of the effects of both interactions, generally
concluding that both pieces of physics are important, but
with many subtleties. There is further controversy about the
strength of the electron-phonon interaction with extended
x-ray absorption fine structure'> and pulsed neutron
diffraction'* measurements pointing to strong interaction
while some electron microscopy measurements'>!¢ have in-
ferred weak coupling in the charge ordered phases. In that
regime optical measurements often infer small electronic
gaps!” and measurements of nonlinear transport'® have been
interpreted as due to sliding motion of a density wave.

Without addressing ab initio the issues of the quantitative
strength of the interactions it is worth understanding how in
principle a weak coupling theory might possibly work. The
notion of JT is a molecular one, and the linear splitting of
levels by a local distortion a useful principle only if the
induced gap is much larger than the bandwidth (which it is
not). Nonetheless, oxides are generally viewed as a template
for strong interaction physics, both of the electronic and
phononic variety. In this paper, we step back from the com-
plexities of the full many-body theories to point out that the
canonical model for LaMnOj; has a weak-coupling general-
ized Peierls instability that reproduces qualitatively the or-
dering observed. One advantage of the simplification intro-
duced by our approach is that we can study effects of
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adiabaticity that turn out to enter logarithmically in the ratio
of electronic bandwidth to phonon frequency.

Our observation follows straightforwardly from assuming
A-type antiferromagnetic ordering. On account of strong
Hund’s coupling, the transport is restricted to spin polarized
electrons in two dimensions only, where, furthermore, the
bands are strongly nested. The proximity to a nesting insta-
bility allows us to employ the weak-coupling framework de-
veloped earlier"-!? and analyze the orbital ordering by using a
generalized Peierls instability approach. However, as com-
pared to the one-dimensional Peierls charge density wave
(CDW) approach, our higher dimensional orbital density
wave (ODW) analysis is more complicated on account of
there being two e, orbitals (with interorbital hopping) and
two response functions corresponding to the JT Q, and O3
distortions. The consequences of a nesting instability on the
orbital ordering in LaMnO; were first discussed by Yarla-
gadda and Mitra®® and later qualitatively by Efremov and
Khomskii.?!

In this paper, we study the Peierls instability condition by
extending the recently developed reliable condition involv-
ing the dynamic susceptibility! to a mixed JT mode. We find
that O, Jahn-Teller distortion, as observed experimentally,
preempts other JT normal mode distortions at all values of
adiabaticity and temperature. Furthermore, the condition of
instability (i.e., functional dependence of critical coupling on
adiabaticity) is qualitatively similar to that of the one-
dimensional single-orbital Holstein model. Lastly, we also
find that mean-field approximation (in spite of being crude)
and static Peierls instability condition (albeit erroneous) in-
dicate that O, mode rather than Q; mode determines the
orbital order.

II. MODEL HAMILTONIAN

We will now consider manganite systems with two e,
orbitals per site and ignore spin. The Hamiltonian consists of
the kinetic term, the ionic term, and the electron-ion interac-
tion term. The kinetic term in momentum space is given by

H =2 B} T B, (1)
1z

where B;E(lﬂﬁ,b;ﬁ) with b, and b, corresponding to the

destruction operators for electrons with the orthonormal
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FIG. 1. Fermi seas corresponding to the eigenenergies )\lf’z.

wave functions #,2_2 and ¢,2_,2, respectively. Furthermore,
T is a hermitian matrix with T;;=—1.57cos p,+cos p,],
T, ,=-0.51[cos p +cos p,], and T, ,=0.5\31[cos p,
—cos p,]. The eigenvalues of the kinetic energy are given by

N, =—t[cos p,+cos p,

+ (= 1)"Vcos? p, + cos? Py —cos p,cos p, ]|

with n=1,2. The Fermi sea corresponding to the lower
eigenenergy value )\’5 is given by the union of the region
—-m/2=<k,=<m/2 (with all values of k, allowed) and the re-
gion —7/2=<k,=m/2 (with all values of k, allowed) as
shown by the shaded region (both dark and light) in Fig. 1.
Whereas the Fermi sea corresponding to the higher eigenen-
ergy value )\’f is given by the intersection of the region
-m/2=k,= /2 and the region —m/2=k,=7/2, i.e., only
the dark shaded region in Fig. 1. Since the number of elec-
trons is equal to the number of sites, the total area occupied
by both Fermi seas is equal to the area of the Brillouin zone
(472). Furthermore, the Fermi surface corresponds to )\’;=O.
The electron-phonon interaction term is given by

har, T
H3 = gwov'ZMwOE [Qzl(bljbzl + b;jblj)
J

+ QSj(ijblj - b;ijj)]» (2)

while the phononic part of the Hamiltonian is given by

Hy=0)> > fifiis (3)

j =23

where f;;+ f]T]: V2M w(Q,;. Since we are interested in under-
standing orbital order, our Hamiltonian does not contain
breathing mode distortions.

III. PEIERLS INSTABILITY

In this section, to understand orbital ordering at weak
electron-phonon coupling, we consider the Peierls instability
condition by using the dynamic susceptibility instead of the
static one (see Appendix A for a justification). The coopera-
tive Jahn-Teller effect requires compatible distortions on ad-
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jacent sites, which implies that the ordering wave vector in
two-dimensions is given by Q= (1, 7). We expand the free
energy to quadratic order in the relevant degree of freedom
(i.e., density n of electrons in an appropriate occupied or-
bital) as follows:

nan_ -
F=q§g[—5§;§3273+gwmuiogﬂ»+vwﬂ
+ wy(f, i/)qu ¢q>] , (4)

where fy;+ f ~—\2M w0, Here, Q4 is the dominant mode
defined as Qd> Q5 cos(2¢) +Q, sin(2¢p) where only orbitals
e_y2 cos() + .2 sin(¢p) or their orthonormal orbital states
—(//,Cz 2 sin(¢) + .2 cos(¢p) are occupied. The order param-
eter correspondmg to phonons is given by (f43)=
Usmg reflection symmetry, we first note that X¢(Q ©)=X4
(- Q ), ng=n_op, <f¢Q> (qu Q> and <f¢Q> <f¢ Q> For g
>0, free energy minimum occurs at ®=7. Minimizing F,
with respect to [(f46)|=gng. Thus, we get

o 1+2g%wy Re X¢(Q w) ngn_g 5)
Re X¢(Q o)

On defining the effective susceptibility as

Re
off — N Xe 6
Xo 1+2g%wy Re )(d,’ (©)

the Peierls instability condition is given by
1+28%w Re x4(Q.w0) =0, (7)

and leads to the divergence of x{ (0, w,). We take w=w, in

ef /(0 w) because wy is the natural frequency for lattice dis-
tortlon A better explanation for choosing w=wj is given in
Appendix A.

We need to determine at what value of ¢ one gets the
largest value of Re X¢(é,w0). Then one can determine which
normal mode gives the lowest value of g=g, satisfying the
Peierls instability condition. Note that, as the rotational angle
¢ (for 0= p=m/2) is varied, all possible normal modes are
spanned starting from Qs at ¢»=0 to O, at ¢=m/4 and then
to —Q5 at ¢p=1/2. The dynamic susceptibility is given by

w) = E |<n|PQ¢(Q)|O>|2 |<O|PQ¢(Q)|”>|2

’ ) 8
X¢(q W= §n0+l77 (1)+§,10+l77 ( )
where
. E T
p04(q) = [b1 fsgP1E = bag, bailcos(2)
+ [b1k+qb2k + b2k+q 1£18in(2¢). )

Then, after some algebra, one gets
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FIG. 2. Plot of )(2’3(Qe,0) as a function of scaled temperature aT
at ar=1.0 eV and QEQ:(W,#).

o
<cl§ CZ) <Ck+qck+q>

Re x4(G, wo) = >

- k k-
ka8 w0+7\a—)\ﬁ+q

Oprg+ O+ (a+ B)m
2

2

X cos

s

(10)

where a=1,2; B=1,2; (¢ ,c7)=(b],b])-M, M is the di-
agonalizing matrix for the kinetic matrix T with M,
=sin(6;/2), M, ,=-sin(6;/2), and M, ,=cos(6;/2). It is in-
teresting to note that, for symmetric wave vectors §=(q,q),
there is no coupling between the density operators corre-
sponding to Q2 and Q5 modes because the interorbital hop-
ping T ,=0. 5\3t[cos P,—COS py] is asymmetric with respect
to interchange of momenta p, and p,. Thus, for §=(q.q), we
obtain

X (@, 00) = X3(G, w0)cos*(2h) + x2(G, wp)sin*(2¢p),
(11)

where x, 3 correspond to JT modes Q, 3

A. Static Instability Case

Now, although the static Peierls instability condition 1
+2g2wOX¢(é,0)=0 erroneously predicts instability even for
vanishing values of g, it can still help identify which normal
mode produces the Jahn-Teller instability. We will first
present results for the static susceptibilities X2,3(é,0). From
the plot of X2!3(Qe,0) (shown in Fig. 2) as a function of scaled
temperature a7 (with « being a scaling parameter and hop-
ping term at set equal to 1.0 eV) we see that they diverge
logarithmically as T— 0 with y, diverging faster than y;. At
0 K, both x,(0,0) and X3(Q’9) produce a divergence be-
cause of the fact that Ni*¢=—\} and that the Fermi energy is
zero. Furthermore, the ratio Xz(é,O)/ x3(0,0)=3 at 0 K (see
Appendix B for details). As can be seen from Fig. 2,
X2’3(é,0) vary logarithmically with kzT/t for t/kzT>2 and
thus have the form
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FIG. 3. Plot of Re y, as a function of the adiabaticity ¢/, for
various values of ¢. ¢p=0°(45°) corresponds to x3(x2)-

Re[- fX2,3(é,0)] =my 3 In(t/kpT) + Ky 3. (12)

We find that my = 126(””3 z42) and Ky~ 183(K3z 185)
with the ratio m,/mj5 taking the expected value 3. Thus, it
appears that O, mode is likely to dictate the orbital ordering.

B. Dynamic Instability Case

While both the static Peierls instability condition and the
mean-field energy analysis (see Appendix C) depend only on
the polaron size parameter (g2w,/t), here for the dynamical
Peierls instability condition [of Eq. (7)] there are two rel-
evant parameters—namely, adiabaticity parameter ¢/ w, and
electron-phonon coupling g. We find that for any value of the
adiabaticity parameter #/w, the maximum value of
Re X¢(é,wo) occurs at ¢p=m/4, which corresponds to Q,
mode. In Fig. 3, using Eq. (10), a variation of Re X¢(é,w0)
(at 0 K) is plotted for a few representative values of ¢=0,
/12, 7/6, and /4. The curves for Re x.12(0,p) and
Re x.,6(0,wp) (in Fig. 3) verify Eq. (11). Furthermore, we
also found numerically that Re X¢(é,w0) [given by Eq. (10)]
is symmetric about ¢=/4—a fact that follows from Eq.
(11).

Quite strikingly, all the Re X¢(Q, w,) vary logarithmically
with the adiabaticity ¢/ wq for ¢t/ wy>?2 and have the form

Re[— tX¢(Q, wo)] =my ln(t/(l)o) + Ky (13)

We find that m_,~12.6(mg=~4.2) and k,.~25.5(k
~20.9). Interestingly, the slopes in Eq. (13) are the same as
those in Eq. (12). The ratio of the slopes m4/my=3 as ex-
pected from the fact that x(0,0)/ X3(Q,O):3 at 0 K. Fur-
thermore, this logarithmic dependence is quite like that for
the Holstein model. Using the dynamic Peierls instability
condition, similar to the Holstein model case, we are lead to
an instability condition of the form woza,te‘”zﬁgz“’o where
a, 5 are constants. We also calculated the critical value of the
electron-phonon coupling g, at which the instability occurs if
only O, mode or only O3 mode is excited. We find that the
value of g. increases monotonically with the adiabaticity pa-
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FIG. 4. Plot of the critical coupling g. as a function of adiaba-
ticity ¢/ w for the susceptibilities y, and x;.

rameter (similar to the Holstein model) and that, as expected,
the g, value is the smallest for Q, distortion (as can be seen
in Fig. 4) at any value of #/ .

We have also studied the temperature dependence of the
dynamical susceptibilities (as shown in Fig. 5) and find that
at low temperatures the curves are constant with the extant of
the constant region increasing as ¢/ w, decreases. Such a be-
havior is consistent with the expectation that Re X¢(é,w0) is
constant over the region kzT<<w,. Furthermore, at higher
temperatures the susceptibilities for various adiabaticities
merge. For instance, when a7 attains a value of around 300
K, curves for ¢t/ wy=100 and % merge (as can be seen from
Figs. 2 and 5); and for aT around 2000 K, curves for #/ wg
=100 and 5 merge. The high-temperature behavior too is
understandable because one expects the effect of nonzero
value of w, to vanish when kz7T> w,. At the Jahn-Teller or-
bital ordering temperature of 780 K and for realistic values
of both ¢ and wy [i.e., for 0.15 eV=r=0.38 eV (Ref. 22)
and for 0.06 eV=w,=0.07 eV (Ref. 23)], range of the
critical coupling [as obtained from Eq. (7) and Fig. 5] is
0.2=g.=0.28. For instance, at T=780 K, r=0.2 eV [and
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FIG. 5. Plot of the susceptibilities Re X2,3(é,wo) as a function
of the scaled temperature a7 for values of scaled hopping at
=1.0 eV and adiabaticity ¢/ wy=5,100.
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hence, @=5 in Fig. 5], and w,=0.07 eV, we get g.~0.21.
Lastly, for kzT> w, but kgT/t<<0.5, the curves display a
logarithmic dependence on kz7/t which is in tune with the
logarithmic dependence on wy/¢ of the susceptibility of the
Holstein model when w,/1<<0.5 (see Ref. 1).

IV. CONCLUSIONS

We will now discuss the general features of the orbital-
ordering instability and compare it with the Peierls instability
in the Holstein model. For the Holstein model, at 0 K, the
mean-field approximation gives a gap A of the form?*

A = 8¢~ ™8 w0, (14)

In our case as well, we find that the gap is given by
Ayz=dy, 3t€_d§*3ﬁg2w°7 (15)

where d)3 are constants and A, 3= g’wy|c, 3| with ¢, 5 being
amplltudes of orbital density waves defined in Appendix C.
It should however be noted that, when A/ wy<€ 1, mean-field
gives erroneous results. For instance, it predicts a gap even
when the electron-phonon coupling g is small. Although,
mean-field approximation is inaccurate at the transition, it
can still help us figure out which of the two JT modes is
dominant. As shown in Appendix C, mean-field correctly
shows that O, mode prevails over Q3 mode.

Next, in the Holstein model,"?> at 0 K and ¢/ w,>2, the
actual instability condition is given by

wy= 8re~ 8 00 (16)

For our JT system too, at kzT << wy and (kgT> w,) and when
t/ wy>2(t/kgT>?2), the instability is of the form

wo(YksT) = ayte™ 2’5, (17)

and thus, such as the Holstein model, has an essential singu-
larity at g=0. We also note that one cannot get the correct
Pelerls mstablhty condition by the approximation P> /(2M)
+K Q ¢/ 2=K Q ¢/ 2 for the normal mode distortion even when
t/ w, is large. This is because, when P2 »/ (2M)=0, the double
commutator for the distortion Q. becomes Zero,

Q¢é:_[[Q¢ésH]’H]:O’ (18)

which implies that phase transition always occurs!

In summary, we observe that owing to the one-
dimensional like Fermi surface at zero doping in manganites
(as shown in Fig. 1), there are strong similarities of the above
mentioned nature between our JT system and the one-
dimensional Holstein model. The one-dimensionality of our
manganite system is a result of the flatness of the Fermi
surface [as can be seen, for instance, from Eq. (B7)]. When
t/[max{wy,kpT,A4}]>2, we find that the susceptibility Re[
—tX¢(é,wo)] varies logarithmically ~with respect to
t/[max{wy,kgT,A}] and has the general form

Re[- tX¢(é,w())] =mgy In(t/[max{wy, YkgT,A 4}]) + Ky,

with y=~1.77 and both m, and «, being given by Eq. (13).
Using this logarithmic relation and the generalized Peierls
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instability condition of Eq. (7), one obtains the explicit form
of the instability condition.

In conclusion, we have studied orbital ordering for the
ground state of the undoped manganite systems in the weak
electron-phonon coupling regime gw,/t<<1. We employ the
generalized dynamic Peierls instability condition 1
+2g%w, Re X¢,(Q, () =0 to figure out which normal mode or
combination of normal modes causes the instability. It is also
important to note that the dynamic Peierls instability condi-
tion does not suffer from the problem of predicting CDW
instability at vanishingly small electron-phonon coupling
(i.e., g—0) as does the usual static Peierls instability condi-
tion [1 +2g2wox¢(é,0)=0]. We find that Q, Jahn-Teller dis-
tortion produces the first instability and thus pre-empts other
normal mode distortions. Thus the two-dimensional orbital
ordering, in the ferromagnetic planes of the observed A-type
antiferromagnetic state, is governed by the O, JT mode being
cooperatively excited in the system. Hence, we find that the
experimentally observed order can be explained even with-
out considering electron-electron interactions.

Before we close, a few general discussions are in order.
Above the magnetic transition temperature 7, where orbital
structure does not change much, transport is permitted in the
third direction and the Fermi surface for three dimensions
should be considered. Then, although the bands are not flat,
we still have the nesting condition \*¢=—)\% for 0
=(m,,m) and hence the static susceptibilities will diverge.
However, the experimental ordering wave vector is (77, ,0)
and not (77, 77, ). To get the observed ordering one will have
to incorporate additional physics such as octahedral tilting.
Next, at nonzero temperatures below 7, hopping in the third
direction is small but nonzero owing to the nonsaturation in
A-type antiferromagnetic order. Then flatness (one-
dimensionality) of the Fermi surface would be lost. How-
ever, hopping in the third direction increases with tempera-
ture and the situation is different from that mentioned in Ref.
26 where, since the hopping in the transverse direction de-
creases with increasing temperature, re-entrant behavior
could occur. Lastly, electron-electron interactions can have
an effect on the nesting conditions as pointed out by Kugel,
Sboychakov, and Khomskii.2” These authors find that
electron-electron interactions lead to the occurrence of nest-
ing at a density of less than an electron per site. However, in
this work, Luttinger’s theorem is violated [see Fig. 5(e) in
Ref. 27 and implications of that should be investigated for
non-Fermi liquid behavior. If, indeed in a full-fledged calcu-
lation, beyond the Hubbard I approximation, nesting (with
flat Fermi surface) occurs at a lower density, then a corre-
sponding ODW instability condition should be reanalyzed
for such a situation.
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APPENDIX A: JUSTIFICATION FOR DYNAMIC
PEIERLS INSTABILITY CONDITION

We shall give a heuristic justification for the use of dy-
namic susceptibility in the Peierls instability condition

PHYSICAL REVIEW B 80, 235123 (2009)

1+2¢%w, Re X¢(é,w0) =0. (A1)
Let Q45 be the dominant normal mode distortion operator (at

wave vector Q) in the Fourier transformed space. We know
that the double time derivative of the operator Q4 is given
by

046 =~ [[Qyg.H).H]. (A2)
Then on taking matrix elements we get
<¢1|Q¢Q|Cbo> =—(Eg, — E¢0)2<¢1|Q¢Q|®o>, (A3)

where @, is an eigenstate with n phonons all of which are in
the state Q. When wiffE(Eq)l—Eq)o)zSO, instability occurs
for transition from |®g) to @) provided that (®;|Q45/Po)
#0. Now, at weak electron-phonon couplings (i.e., when
gwy/t<1)

Ep —Eg,=wy+Re S (0. w9) = wy + g2 Re x4(0. ).
(Ad)

where 2, is the self-energy corresponding to mode Q5.
Thus, when

why= g1 +2g%wy Re x4(0.0)]=0,  (A5)
CDW instability occurs. The above instability condition is
exact up to second-order in perturbation theory. A more de-
tailed and rigorous derivation of the dynamic Peierls insta-
bility condition is given in Ref. 1.

APPENDIX B: RATIO OF STATIC JT SUSCEPTIBILITIES

We will show analytically that x(Q,0)/x5(0,0)=3 at 0
K. Understanding the susceptibilities is complicated because
the eigenstates [corresponding to the eigenvalues )\’fyz] are a
linear combination of the states i ,2_,2 and ¢y 3,2 2 with
coefficients that are a function of the wave vector k. More
precisely, the eigenvectors for )\If’z are given by (cl];,cij)

=(bIE,b;E)'M, where M is the diagonalizing matrix for the
kinetic matrix T with M, ;=sin(6;/2), M, ,=—-sin(6;/2), and
M ,=cos(6;/2).

Now, from the kinetic matrix T, we get

0.5[cos p, +cos p, ]

cos(6;) = — - . (B1)
\cos” p, +€os” p, —COs p, Cos p,

and

_
0.5v3[cos p,— cos p,]

sin( ;) = (B2)

[
Vcos? p, + cos? Py = €OS P, COS P,

In the expressions for X2,3(Q9,O) given below
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(e (gl

X2(0,0) = E%ﬂ )\; - )\]Z;Q
xsin?| 22t 0,;; @+ B ., (B3)
and
wGo=s |4 - gl
fap A - )\’EQ
X cos? g b1+ (et B ) (B4)

2

because )\§+Q=—)\If and since on the Fermi surface (FS) )\’1;
=0, the following term diverges

15 1 2
(cpep - <ck+Q k+Q>

k
)\1 - )\2+Q

(B5)

Furthermore, because )\'f+Q=—)\§ and since )\§=O on the FS,
the following term also diverges

| 1
(et Ck> <Ck+Q k+Q>

(B6)
N5 - ag+0
Then
- - 2 FS Sinz(GE)FS
,0)/ ,0) = = =3,
X2(0,0)/x5(Q,0) {0k+Q+ H’EJ c0s(6) s
sin”| ——
2 FS
(B7)

where use has been made of the fact that the FS is flat and
one-dimensional like and that on the FS either k,= = 7/2 or
ky: *+ /2.

APPENDIX C: MEAN-FIELD CDW ANALYSIS

Assuming that the total wave function of the system is
separable into a phononic part and an electronic part, after
averaging the Hamiltonian over the phononic coordinates,
we get the following effective Hamiltonian (with details
given in Ref. 19):

P J
X(b} b+ b3 5ibij) + (b} bij— b} 'sz)<bJ{ bij— b} 2]
+g wOZ (b} oa; + b b1 )2 + (bl by~ bby)?,  (C1)

where (..) implies averaging over the relevant coordinates
which here are electronic.
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FIG. 6. (a) Dependence of dimensionless ground state energy
per site (E/£) on dimensionless polaronic energy (g2w,/1) for coop-
erative 0, and Q3 modes; (b) variation of coefficients ¢, ; of ODW
order parameters for Q, and Q5 distortions as a function of g%w/1.

Based on the arguments that wave vector é determines
the orbital ordering in two-dimensions (as discussed in Sec.
1), we compute the ground-state energy using mean-field
when only either O, mode or Q5 mode gets excited coopera-
tively in the system. The order parameters are given by
<b b2j+b2]b1j> Cy COS(Q R) and <b blj szsz>
=c5 cos(Q- R) with —1=¢,;=1 and R being the position
vector. Here, it should be pointed out that the order param-
eter (b} b21+b§jb ») corresponds to the dens1ty difference of
electrons in the two orbitals = (2., 1,0%2_,2)/\2 and
by=—(ha_p+ ¢3,z_,z)/\2 (as described i 1n Ref. 10).

The unit cell needed to compute the ground-state energy
consists of two adjacent sites with the Brillouin zone being
given by —7=(k,+k,) = and —7= (k,—k,) = 7. We diag-
onalize a 4 X4 matrix at each momentum and integrate the
lowest two eigenenergies over the Brillouin zone to obtain
the ground state energy. The results of our calculations are
shown in Fig. 6. From Fig. 6(a), we see that the ground state
energy corresponds to the O, mode with the difference in
energy between the O, only state and the Q5 only state peak-
ing at intermediate values of the dimensionless polaronic en-
ergy (g%wy/t). For zero values and infinite values of the po-
laronic energy both modes yield the same energy because
zero value implies no phononic coupling effect while infinite
value corresponds to localized polarons. Thus for large val-
ues of the polaronic energy, the ground state energy is only
slightly smaller than the polaronic energy. Furthermore, from
Fig. 6(b) we also see that, as the polaronic energy increases,
the values of ¢, 3 increase and become unity around g2wy/t
~2 implying that for the Q;(Q,) mode #,2_,2(ty) orbital is
occupied fully at one site with the i3.2_,2(¢}y) orbital being
fully occupied at the adjacent sites.
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